Speech-Enabling Visud Basic 6 Applications with Microsoft SAP! 5.1
© 2001 Microsoft Corporation. All rights reserved.

Summary

Prerequisites

Y ou need no previous experience with speech recognition, but you should understand fundamentas
of Visud Basc®. The article and samples are written specificaly for Microsoft Visua Basic 6.0.
However, since SAPI 5.1 supports OLE Automation, any users of alanguage and a compiler
supporting Autometion standards (including but not limited to C# and JScript®) may find this article
ussful.

Difficulty Level
1 (Smple or beginner)

Summary Paragraph

Microsoft's new speech recognition technology called Speech Application Programming Interface
(SAP!) vastly reduces the complexity of speech recognition (SR) or text-to-speech (TTS)
programming. Y ou can now speech-enable applicationsin asfew asfive lines. While the October
2000 release of SAPI 5.0 was written for C/C++ programmers, the summer 2001 release of SAFI
5.1 dlows Visud Basic programmers access to speech technology by adding OLE Automation
support. Now, your Visua Basic gpplications can use SR or TTS with the same smplicity that
C/C++ developers enjoy.

Introduction

Microsoft Speech Application Interface (SAP) brings speech recognition to the desktop in new
and smpleways. The SAPI 5.0 verson released in the fal of 2000 radically redesigned the product
from the ground up. The new design introduces many advantages such as, faster and higher quality
speech engines, engine independence for applications, and reliance on component object model
(COM) technology. However, smplicity is the most important advantage in programming speech
applications. C/C++ gpplications previoudy requiring 200 lines of code are now speechrenabled in
asfew asfivelines. The recent release of SAPI 5.1 extends this smplicity to Visud Basic through
OLE Automation. Visud Basic gpplications can add speech technology in only two lines of code.

Now that speech technology is no longer considered complex or esoteric, you are encouraged to
add speech to your applications. This article discusses fundamenta principles for speech recognition
and, dong with severd examples, demongrates the smplicity of programming with SAPI 5.1.

SAPI Overview

Speech programming has two genera aspects: text-to-speech (TTS) and speech recognition (SR).
TTS uses a synthesized voice to speak text. This enables applications to speak to you aswell as

reading text and files. TTS extends your experience by supplementing existing visud feedback
methods. This could include spoken verification of actions, derting you to specific Stuations, or
providing a screen reade.

Speech recognition (SR) converts human speech into text. Thisis further broken down into two
types of SR: dictation, and command and control. Dictation isthe traditional perception of speech
recognition. The speech engine matches your words to its dictionary and converts them to text on
the screen. The best example isthistype of SR is dictating aletter where you have no redtrictionson
vocabulary. In contrast, command and control limits recognition to asmaller list of words and can
associate specific words to specific actions. As an example, an gpplication’s menu bar may be
speech-enabled. When you spesk the word “file” or “save as,” the File menu could drop down or
the Save Aswindow might appear. As aresult, command and control is efficient and effective at
processing commands. Command and control aso extends the user experience by supplementing
traditiond input methods. Keeping with the menu example, you can spesk the name of the menu or
menu item to activate it rather than moving the mouse to a different part of the screen.

Figure 1 demondtrates the relationships between al components for speech. In generd, SAPI isa
st of three layers or components. The topmost layer represents your application and isthe layer of
most interest to developers. Y our application initiates gpeech commands and ultimately the
application recaives the results of the other two layers. The second layer represents SAPI runtime
files. Asasystem-level component, SAPI intercepts all speech commands and ether processes the
speech itsdlf or forwards the commands to the next layer. Because the next layer SAP!I is between
the gpplication and the speech engines, it is often called middleware. Findly the speech engines are
below SAPI. Two specid device drivers (collectively caled speech engines) separate voice
commands into either SR or TTS. When the respective engine processes the command, the result is
passed back up to SAPI, which in turn, passesit on to the gpplication.

Two sets of well-defined interfaces connect adjacent components. Between the application and
SAPI run-timefilesis the gpplication programming interface (also caled an AP1). For Visud Basc
developers, the Automation chapter in the SAPI SDK 5.1 documentation isimportant. Nearly 400
API methods and properties that compose the API are explained in detail. Between SAPI and the
enginesisthe device driver interface (DDI). This DDI isintended for low-level accessto engine
information or even for writing your own speech engine. These layersin architecture alow for grest
flexibility in speech management in that each layer can be independent of the other two. The only
regtriction is that the connecting interfaces conform to Microsoft's SAPI standards. By conforming,
each layer seamlesdy interacts with another layer. As aresult, the application designer does not
need to know which manufacturer’ s engines have been ingtdled. In short, SAPI is the converson
tool between applications and speech engines.

Application Application

]

AR

SAP! Funtirme

]

| Recng_nltlun TISER
Engine

Figure 1. The architecture of SAP 5.1 showing the three layers.

Getting Started

SAPI 5.1 isasystem component and must be loaded prior to using speech operations. SAPI 5.1 is
supported on Windows NT 4.0 or later version or on Windows 98 or later version. Although SAPI
5.1 may be ingtdled through other means (see Deployment below), it is recommended that you load
the complete SAPI software development kit (SDK) 5.1. It is available through the Microsoft
Speech.NET web site (http://www.microsoft.com/speech). The SDK as well as redidtributable
ingtalation files are provided & no cost. In addition to ingtaling SAPI 5.1 run-time files and engines,
the SDK isdso inddled. The SDK contains reference materia for the methods and other
programming support, examples in three languages supporting Automation (Visud Badc, JScript,
and C#), and tutorias. Windows XP Professona or Home Editions include SAPI 5.1 but only
ingall TTS. However, Microsoft Office XP uses SAPI 5.0 and cannot use Automation for speech.
End users of your applications can indal SAPI 5.1 in other ways, see Deployment below.

In order for you to hear the TTS voice, your computer needs speakers. SR requires an input device
(microphone). A high quality head set is recommended for optima speech recognition, athough
maost microphones work adequately.

SAPI 5.0 and SAPI 5.1 generaly use smart defaults during ingtalation. Thet is, default vaues are
assgned using the computer’ s existing vaues whenever possible. These defaults assign active
speakers and microphones among other things. As aresult, SAPI 5.1 isready for immediate use
after ingdlation without explicitly setting or configuring any additiond features. It is recommended
that you spend a least 15 minutes training the computer. Training alows the speech recognizer to
adapt to the sound of your voice, word pronunciation, accent, speaking manner, and even new or
idiomatic words. The more training you do, the higher your recognition accuracy will be.

The examples and discussion in this article use Microsoft Visud Basic 6.0. However, you can use
any language and compiler supporting Automation. In those cases, the principles of SAPI
programming and design will be the same as those discussed with Visud Basic, dthough minor code
modifications may be required. Visud Basic projects must link to the SAPI type library (or
“reference’ in Visud Basc terms). Thisreferencefile dlows Visua Basic applications to access the
SAPI 5.1 features and commands. Add the reference in Visud Basic using the Project->References
menu item and select Microsoft Speech Object Library. Some computers may have other reference
fileswith “gpeech” or “voice’ in the name but these reference files are not related to SAPI 5.1. To
use the examples below, create a new project each time, ensuring that the SAPI reference is added

to the project. Each sample describes the control items and their names needed for each form. Paste
or type the sample in the code section of the project.

Text-to-Speech (TTS)

TTSisthe smplest use of SAPI. The example below creates a synthesized voice which spesks text
supplied to it, in this case afixed string of “Hello, world.” Create a project with aform without any
controls and paste the sample into the code section.

Private Sub Form Load()
D m MyVoi ce As SpVoi ce
Set MyVoi ce = New SpVoi ce
M/Voi ce. Speak "Hel | o, world"
End Sub

Although thisisasmal application of three lines, programmers not accustomed to object
programming may notice three fegtures. Firs, the variable MyVoiceis explicitly declared but it is of
type SpVoice Thistypeisunique to SAPI and it is dependent on the reference Microsoft Speech
Object Library. Second, the object is instantiated with the keywords “set” and “new.” This
keyword combination not only alocates memory for the object, but dso often fillsin required vaues
or properties. While the keywords are actudly a Visua Basic mechanism and not related to SAPI,
SAPF initidizes as much information for a newly created object as possible. In many cases, SAPI
objects do not require further initidizing. As aresult, the object MyVoice is ready for immediate
use. The object setsthe characteristics of the TTS voice. These characteristics include voice, speed,
and pitch. Fortunatdly, most of SAPI’s functionality using objects and using these keywordsis
common. The third and most interesting note is that the Speak method of MyV oice actudly speeks
the text. By creating a Single object and issuing a Speak command, the application is now speech
enabled.

SAP would be too redtrictive if it spoke only hard-coded text. The next example alows greater
speaking latitude by using atext box. Text may be typed or pasted into the text box and, when
directed, it will be spoken. Create a project with aform having two controls. a text box named
Text1, and a command button named Commandl. Paste the sample into the code section,
completdy replacing any exiging code. While the example is dightly larger than the previous one,
there are ill only two SAPI-related lines; the other lines accommodate Visud Basic.

Di m gM/Voi ce As SpVoi ce

Private Sub Form Load()
Set gM/Voi ce = New SpVoi ce
TextField. Text = "Hello, world"
End Sub

Private Sub SpeakltBtn_Cick()
gM/Voi ce. Speak Text Fi el d. Text
End Sub

Speech Recognition (SR): Dictation
The next example introduces SR. It isasmple gpplication (displaying your spoken commentsin a
text box) but introduces three fundamental SR concepts. To run the sample, create a project with a

form having a single text box control named Text1 Paste the sample into the code section,
completely replacing any existing code. After loading and running the application, spesk into the
microphone and the text will display your spoken words.

Public WthEvents nyRecogni zer As SpShar edRecoCont ext
Public nyG ammar As | SpeechRecoG amar

Private Sub Form Load()
Set nyRecogni zer = New SpShar edRecoCont ext
Set nyG ammar = nyRecogni zer. Cr eat eG anmar
nyG amar . Di ct ati onLoad
nyG ammar . Di ct ati onSet St at e SGDSActi ve

End Sub

Private Sub nyRecogni zer _Recogni ti on(ByVal StreanNunber As Long, ByVal StreanPosition
As Variant, ByVal RecognitionType As SpeechlLib. SpeechRecognitionType, ByVal Result As
SpeechlLi b. | SpeechRecoResul t)

Text 1. Text = Resul t. Phrasel nfo. Get Text
End Sub

Thefirg concept for SR isthat of the recognition context. In the example, the
SpSharedRecoContext object of nyRecogni zer represents the recognition context. It isthe primary
means by which an gpplication interacts with SAPI for speech recognition. A recognition context is
an object that enables an gpplication to Sart and stop recognition, and receive information back
from both SAPI and the speech engine. In short, SR must be assigned to a specific recognition
context. This sample creates only one recognition context and by default no restrictions are placed
on the vocabulary. Y ou may say dmost any word, and to the best of the speech engine' s capability,
it will trandate your words into text. Compare this to the command and control example shown

later, where the list of words that can be recognized is limited. This difference helps to understand
recognition contexts. Using a dictation application, you could say, “closg’ for instance, and no action
will be taken other than trandating it. The same word in a command and control scenario could
actudly initiate an action such as closing awindow. In this regard, the word “closg’ has two different
uses or contexts. A recognition context smply helps contain the speech.

The second concept isthat of agrammar. A grammar is the set of words available for recognition.
In either dictation or command and contral, the grammar must be explicitly created and then loaded.
For dictation, adefault dictionary isavalable. Thisdefault dictionary alows users access to dl the
words in alanguage. The American English default dictionary, for example, contains about 65,000
words. A command and control grammear, on the other hand, contains a limited number of words.
Its purposeis not to provide accessto dl the word in alanguage but rather to provide access a set
of word that the application needs. A command and control grammar performs two functions. First,
it customizes the word list. For example, the application may need to recognize only asingle menu's
worth of words such as open, close, or exit. In this case, requiring 65,000 words wastes computer
processing time and memory. Second, the grammar associates aword or phrase with acommand.
For instance, the grammar could associates the statements “open”, “please open’, and “1’d like to
open” to the same labdl such as OpenFile. Regardiess of the variation actudly said, the application
would receive only one event. The code sample above creates the dictation grammar object with
OreateGranmar, and activates the dictionary with Di ct ati onSet State. Thistwo-step process
implies that gpplications can have more than one grammar loaded. In thisway, severd grammars
may be loaded at one time (during gpplication start up for instance) and switched as you change
recognition contexts. However, only one grammar can be active a atime. Command and control

uses aamilar mechanism for loading grammars. Words for a command and control grammar must
exig inalig you create, and thisword list must be stored. Commonly afileis used to sorethislist.
However, the list can dso be stored dynamicaly (in memory). For that reason, the command and
control grammar must take an additional step and indicate which ligt to use and wherethe ligt is
located.

The third important concept is that of events. Events inform the gpplication of activity that might be
sgnificant to the gpplication. For example, when you drike akey, or click the mouse, the operating
system sends an event to the gpplication which can take appropriate action In Visud Basic, dicking
acommand button is acommon event: you cdlick the button and the application receives abutton
event. While the code for the command button looks like a normal function or method, intruth it is
actudly an event. In the same way, events may be generated from outside the gpplication. The
operating sysem may generate an event when incoming e-mail arrives, for indance. That event
could be trapped by an application that might subsequently beep indicating arrived mail. Thiskind of
externd event is actudly very common and is the basis of OLE Automeation.

SAPI uses this eventing mechanism to send information back to the gpplication. In the code sample
above, when a successful recognition occurs, SAPI passes an event back to the gpplication. The
event’s parameters contain information about the recognition. Specifically, the recognition’s text
information isin the parameter Resul t (Of type | SpeechRecoResul t) . Use the Object Browser to
explore | speechRecoResul t . Reault itsdlf is composad of four interfaces including phrase information
(the actua words in the recognized phrase), recognition context data (since more than one
recognition context could be available), the audio stream format, and timing such as when the sound
garted and ended in the audio stream. Since the information is not always obvious, the method

Get Text quickly retrieves recognition’s text.

Although SAPI only has two interfaces returning events (one for SR and another for TTS), thereisa
auite of 28 events. These include starting and stopping recognition or speech attempts. Thereiseven
an event for viseme changes (notification that the word being spoken requires changing mouth
postionsif you are usng animation). However, two commonly used events for SR include
Recognition and FalseRecognition. Recognition indicates that the spoken phrase was matched to
text and that the match has a high confidence rating; thet is, the level of certainty that the spoken
phrase was interpreted correctly. Clear enunciation and lack of interfering background noise
generdly produce a high confidence rating. FalseRecognition is just the opposite. The spoken
phrase did not have a high enough confidence rating to be considered successfully matched. Even
30, a FalseRecognition returns text most closely matching the phrase. In other words, a
FaseRecognition is a best guess.

Speech Recognition (SR): Command and control

Command and contral introduces dightly more complexity. See Figure 2 for the next code sample.
The agpplication displays the contents of a Sngle menu; however, individual menu items cannot be
accessed. To run the sample, create aproject with aform containing a menu bar with asingle menu
named File. At least one menu item should be added under it. Paste the sample into the code
section, completely replacing any existing code. After loading and running the gpplication, Soeak the
commeand “file” The menu, dong with any menu items under it, is displayed.

As mentioned in the previous dictation discusson, command and control uses alist for recognition;
words or phrases not in the list will not be recognized. Storing words to and retrieving words from
thislist represents an extra step needed by command and control. There are two types of command
and control grammars. gatic and dynamic. A gtatic grammar soresthewordsin afile, usudly in
XML format. There are many instances in which you know ahead of time what commands are
available. A travel booking application, for instance, may aways have “ departure” and “arriva”
cities; a coffee service gpplication may have afixed list of available coffee drinks. In these cases, a
datic list could be used. A dynamic grammar is crested while the gpplication is running. Ligting 1
uses adynamic list. Since menus can be created, deleted, or modified while the gpplication is
running, dynamic grammars make sense. Y ou may not know before the gpplication runs, which
itemswill or will not be available.

Aswith dictation, al command and cortrol grammars must be created and activated before using.
Unlike dictation, the application must have away to identify and labe specific words or phrases.
Command and control uses arule-based grammar. This means, Smilar or related commands may be
grouped or named asrules. It is possible to nest rules insde other ones. A high-leve ruleisaspecid
case and isarule not contained within any other rule. Nesting these rules hel ps organize content by
making it logical and easer to maintain. For example, the coffee ordering gpplication may have
severa top-leve rules, such asfor coffee drinks, soft drinks, or snack types. Furthermore, soft
drinks itself may contain two rules for carbonated and non-carbonated drinks. For smplicity, the
Liding 1 sample creates one grammar (GrammarMenu), with one rule (menu) and one command
(file).

Specificaly, the following lines set up a dynamic grammar:

D m TopRul e As | SpeechG amar Rul e

Set TopRul e = G ammar Menu. Rul es. Add(" MENU', SRATopLevel O SRADynamic, 1)
TopRul e. I nitial State. AddWwrdTransition Nothing, "file"

G ammar Menu. Rul es. Commi t

G ammar Menu. CndSet Rul eSt ate "MENU', SGEDSActi ve

The second line actudly creates the rule, declaring it as both a dynamic and atop-levd rule.
Individua commands are added with TopRul e. I ni ti al State. Addwr dTr ansi ti on. Another menu
item could be added by repesting that line with “save’ asthefind parameter. The grammar isthen
notified of dl the changeswith the cal G- ammar Menu. Rul es. Conmi t . After that cdl, the new
commands may be used. The grammar is activated only after al changes are complete.

During a recognition attempt, the speech engine notifies SAPI of a possible recognition. SAP! tries
to match the recognized word or phrase with arule. For ingtance, if you said, “file” SAPI would
check the open grammar to match the word. An unsuccessful match will not return a recognition
event. If successfully matched, the recognition is passed back to the gpplication. In the

RecoCont ext TopMenu_Recogni ti on event, the property Resul t. Phr asel nf o. Grammar | d containsthe
grammar associated with the word. The gpplication now has enough informetion to complete the
command since it recognizes the word spoken and which grammar it is associated with. Logica
decisons such asIf or Select satements can process the information.

Often recognition contexts assume a greater role when you use command and control. Each
gpplication in the two SR samples above has only one recognition context each. For dictation, all
speech is applied to the text window, and the command and control example listens only for the

word “file” Neither gpplication is compelling by itsalf. However, you may want to combine the two.
In this scenario, a second recognition context can be added. The function of the two grammars
(dictation and the command and control for the menu) are, thus, very different. The design of the
new gpplication would need to incorporate two features, each of which isreatively smpleto
implement. The firgt is amechanism switching between the two modes. It would not be satisfactory
to dictate the word “file’ resulting in the File menu opening unexpectedly. A smple solutionisa
button toggling between the two modes. The other condderation isto activate the other grammar
when the new mode is sdlected. Only one grammar may be active a atime. It isimportant to note
that more than one grammar may be open at atime, but not active. Kegping multiple grammars open
savestime and effort from reloading a grammer (if it is stored in afile) or recondructing it (if it is
cregted dynamicaly).

Design Consideration

Congder the design of the speech features before including speech in an gpplication. Early versons
of speech-enabling attempted to convert the entire user interface, with predictably avkward results.
In generd, approach speech as one of many dementsin the user experience. Speech enablean
gpplication where it makes sense. For example, since requirements for mouse or keyboard
navigation in word processors are minima, aword processor could be fully speech-enabled with
only aminor mechanism needed to switch between dictation, and command and control modes. On
the other hand, speech may be more successful if supplementing traditiond user interface methods.
To reduce the number the times you move the mouse away from the drawing areawhile usng a
drafting or drawing agpplication, speech could be used to enter coordinates, change colors, or switch
between windows. Lastly, because of the lag time inherent to al speech recognition processes, using
voice for game commands requiring instantaneous results would be less effective; keyboard
commands or mouse clicks produce faster responses. Y et, the same game may benefit from speech
but for other commands.

L ooking ahead to the next generation of computers, devices such as hand-held computers and smart
phones will certainly have their own user interface requirements. Programmers and designers will be
able to adopt speech in equaly new and cregtive ways.

Deployment

After compilation, the application may need to be deployed on other computers. The target
computers must have SAPI 5.1. There are two options for deploying SAPI 5.1. Thefirst option is
to write your own ingdler. Thisis usualy the best option asit guarantees that you have dl the
required files. The SAPI SDK 5.1 describes setup requirements for an ingtaler. It is recommended
that you use a full-featured ingtdlation package, such as the Microsoft Indaller, as the deployment
package since SAPI SDK 5.1 requires merge modues. Merge modules dlow you to sdectively
ingdall SAPI components In addition, the merge modulesingal automaticaly on supported
platforms; thus, overwriting or deleting files by mistake is unlikely. However, as aresult of requiring
merge modules, the Visud Basic Package and Deployment Wizard cannot be used. The second
option isto use existing SAPI 5.1 ingdlations. Windows XP Professona and Home Editions have
SAPI 5.1 dready ingdled, but only for TTS. If you require SR, you must explicitly load this feature
from acustom ingdler. Office .NET will support SAPI 5.1 for both TTS and SR dthough its

rel ease date has not yet been announced.

Download Samples

The download files contain three examples. one each for TTS, SR dictation, and SR command and
control. The samples are intended to run with Visud Basic 6. The samples need the SAPI SDK
ingtdled. To run properly the speech engines must be ingtdled. While the code liged in this articleis
based on the samples, the samples are much more complete. They include detailed comments,
thorough error checking, proper application termination, and they are more robust. You are
encouraged to use and modify the samples as needed.

Conclusion

Last year’ s redesign of SAPI removed much of the complication, and hopefully, intimidation of
gpeech programming. The intent is to make speech processing smple and convenient. Asseen, TTS
can beintroduced in as few astwo lines of code and SR in asfew asfivelines. In addition, SAF! is
no longer limited to C/C++ programming. SAP! 5.1 isflexible enough to use different languages
such as Visua Basic, JScript and the new C#. Y our understanding of severa concepts presented in
this article helps creste the speech foundation for your application. Certainly not dl the SAPI
concepts were discussed, and, of course, each concept has more details than presented here. SAPI
istechnically sophisticated to allow developers new and exciting speech possibilities. For instance,
SAPI 5.1 integrates with telephony and Internet communication protocols, or custom audio objects
can be written to address challenges not explicitly covered by existing means.

Usng SAPI 5.1 as afoundation, Microsoft is cregting the next generation speech gpplications. As
part of Microsoft’snew Speech .NET Technologies, Web applications may be speech-enabled.
Redlizing the proliferation of mobile devices such as Web-enabled phones or handheld PCs, the
need for speech is even greater. Small keyboards, limiting screen Size, or just the convenience of
speaking commands al make compelling cases.

Figure 2
Di m Recogni zer As SpShar edRecogni zer
Dim Wt hEvents RecoCont ext TopMenu As SpShar edRecoCont ext

Di m Gramar Menu As | SpeechRecoG anmar
Public G D_MENU As | nteger

Private Sub Form Load()
G D MENU = 0

Set Recogni zer = New SpShar edRecogni zer
Set RecoCont ext TopMenu = Recogni zer. O eat eRecoCont ext

Set G ammar Menu = RecoCont ext TopMenu. Cr eat eG ammar (G D_MENU)
G anmar Menu. D ct ati onLoad
D m TopRul e As | SpeechG ammar Rul e
Set TopRul e = G amrar Menu. Rul es. Add(" MENU', SRATopLevel O SRADynamic, 1)
TopRul e. I nitial State. AddWwrdTransition Nothing, "file"
G anmar Menu. Rul es. Commi t
G anmar Menu. CndSet Rul eState "MENU', SCDSActi ve
End Sub

Private Sub RecoCont ext TopMenu_Recogni tion(ByVal StreamNunber As Long, ByVal
StreanPosition As Variant, ByVal RecognitionType As SpeechRecognitionType, ByVal
Result As | SpeechRecoResul t)

Handl eRecoEvent Result
End Sub

Publ i ¢ Sub Handl eRecoEvent (Result As SpeechlLi b. | SpeechRecoResul t)
DimstrText As String

Sel ect Case Result. Phraselnfo. Gamarld
Case G D_MENU
Sel ect Case Result. Phrasel nfo. Get Text
Case "file"
SendKeys " %"

End Sel ect

End Sel ect

End Sub

