
be automated and they have to be comfortable enough to
ask. My favorite part of any project is when writers start
asking, “Is this possible?” or “Can we do this?”

Bureaucracy. NASA is a government agency and despite
the perception of being innovative, it’s ultimately still a
bureaucracy. Combined with other factors such as the
reliance on international partners, interdepartmental
coordination, and natural resistance to change, it was
not always possible to make the right change. We had to
work within what we could change. Don’t be afraid to
compromise or, conversely, overstep boundaries a little as
needed. Remember, it’s easier to keep a project that exists,
rather than sell just an idea for a new one.

Development. Typical writer’s automation projects tend
not to be large or take a long time, perhaps two or three
weeks. They have very specific goals, often just a single task.
One project took less than two hours. In a way, it may not
be much more than rapid prototyping. Working directly
with the clients provides immediate feedback and shortens
development time.

Once completed, you deploy projects in one of two ways.
If the project is simple enough, it can be written as a series
of macros and deployed through a common template.
Otherwise, it will be deployed as a Windows application.
This adds an installation step, but the application benefits
from .NET features, making it more versatile. Web
deployment was not an option for us because Microsoft
Office then couldn’t be used over an intranet.

What Can Be Automated?
I advocate that almost every team can use a programmer-
writer. The team may not even know it, but after pointing
out the opportunities, tools become indispensable. Think
about your procedures and which ones are repeated,
either immediately or periodically, such as before releases.
Repetitious steps are obvious candidates for automation.
Some are less obvious. For example, Flare truncates
bookmark names to eight letters. As a result, sections
such as “Installing System Drivers” and “Installing System
Tools” display as “Installi” and “Installi2.” This truncation
is annoying and unhelpful. You can manually change
these one by one, but an automated tool would fix all
the occurrences in only a few seconds. You could also,
for example, use a building block or snippet to create a

TOOLS WILL ALWAYS be the weak link for writers. Not the
high-level ones such as Flare or Framemaker, but low-level
tools, ones that writers need to finish individual tasks. These
tasks may be unique to each group or perhaps to each writer,
from reformatting long lists of error codes, to collecting
acronyms within a document, to special or conditional
formatting on tables, or repeating onerous sequences—a
representative list is impossible to create. Given the extreme
diversity among writer’s procedures, it is unlikely we will get a
comprehensive tool suite. Neither the commercial sector nor
the writing community at large provides these suites. That
means we have to write them ourselves.

We’ve always been told that the goal is never far off.
Many high-level tools have at least some support for this.
Notably, Microsoft Word has a built in macro language
(VBA), a macro recorder, a code editor, and complete
programmatic access to its commands. These tools, though,
are still very much in a programmer’s realm, out of reach
for many writers, and development groups rarely loan out
programmers. But what if they did? What results are possible?

I was fortunate to be assigned to three writing groups at
the NASA Johnson Space Center in Houston for a number
of years. The mission was simple: to improve these teams’
efficiency. I had considerable leeway in my methods,
but mostly through the creation of custom tools and
procedural changes. My qualifications seemed fitting. I was
a programmer, writer, and programmer-writer, and thus
familiar with writers and the writing process. The teams
were grateful for the attention and willing to help although
there were several conditions that had to be addressed.

Initial mistrust. There was serious mistrust about
automation, with writers imagining that it would eliminate
their jobs. The truth is, it’s about freeing team members
to do what they’re good at. Start on a project they are
comfortable with and earn their trust. Let them set require-
ments, provide frequent product updates, show progress,
and offer options to alleviate those initial fears.

User education. Most team members are Word power
users and capable of solving Word problems themselves.
Automation doesn’t minimize their skills. Quite the
opposite; they still have to tell you to construct the
documents and requirements. Over time, they’ll learn what
is possible with automation. The best ideas come from the
team members themselves, but they have to know what can

Creating Automation
Tools for Writing Teams:
A Programmer’s Perspective
By ROBERT DELWOOD | STC Senior Member

sh
ut

te
rs

to
ck

.c
om

/ A
ha

-S
of

t

September 201624

revision table to show newly added, deleted, or changed
terms. Desktop guides rated this task as 32 hours per
document, although it often took longer, sometimes
more than 40 hours. Over time, the number of flights to
the space station increased from 3 to over 15 a year, and
bureaucracies being what they are, this meant that the
documentation increased at a disproportionately high rate.
Therefore, it was unreasonable to expect this process to
remain a manual effort.

The difficulty started by just identifying what an
acronym was. It could actually be anything from a three-
letter acronym (USA or ARS [Air Revitalization System]), to
terms (Log [Logistics], ATT [Attitude]), or almost anything
else (rack loc [rack location], Rqmt [Requirement], or
U.S. Lab). The approach had been simply looking at each
page, usually printed, and using the reviewer’s skill to spot
acronyms. It was easy to assume the Find dialog could have
been used, but reviewers still had to copy and paste each
term, and the list approached 2,500 terms, double that
if you included the definition. And that only covered the
known terms. Engineers could introduce new terms without
notification. There was also spelling out the term on the
first occurrence, which became increasingly frustrating
since material was often moved. The definitions had
slight variations that had to be corrected (Heat Rejection
Subsystem/Heat Rejection System, or Subelement/
Sub-Element). As a result, automation had to be used, not
only for quality control but, more critically, to keep up with
the increasing workload.

The automation occurred in three steps because each
step required verification and validation. The first step
found and listed all the acronyms. Ultimately, we defined
three ways to find them. What was called the “master list”
was a complete term listing of 2,500 terms. It continues
to grow and is controlled by select book managers. The
application searches for these terms explicitly first. Then
it searches the existing document’s acronym list, assuming
that those terms were already correct. Finally, we created
a catchall using Word’s internal misspelling dictionary.
This identified all other terms, assuming an acronym shows
up as a misspelling. For that list, we reviewed each term,
adding the acronyms as needed. We managed those terms
using Word’s dictionary and exclusion dictionary (such as
for people’s names like Sufferdini). Some acronyms were
also legitimate words (like temp for temporary, or He for
Helium). Unless those terms were in the master list or the
document’s current acronym list, they had to be found
manually. Regardless, we achieved nearly 100% accuracy.

The second step produced the acronym list as Word
table, complete with revision tracks and style formatting
applied. Upon approval, it was this table that was pasted
into the target document.

The third step created a first occurrences report that
team members used to verify that the term was spelled
correctly and fully on first use.

preformatted table, but over time the formatting might
change. Instead, you could write a macro ensuring the
format, from the table headers to the font and size for each
cell, is correct. If you run that macro on dozens of tables
before each release, the time and quality savings become
significant.

Experienced programmer-writers recognize these
opportunities. They can help point out what is and isn’t
automatable, and they often know procedural changes to
accompany the automation.

The following are three representative but diverse projects.

TIFF-based Application
This is an example of controlling two applications,
merging data from one to another. The first document
is an enumerated list of parts and equipment going up
to the space station. The restrictions were to create a
computer-generated RFT file that couldn’t be handled
like a normal Word document; it had to be read only, and
each page had to paste individually into a master, or target
document, complete with table titles and body text provided
by engineers. The conventional way of producing this was
to save the list document as a single TIFF image file. Each
page was then hand copied from Photoshop, pasted, and
resized into the target. The list document was often more
than 80 pages, and the handbook rated this procedure at 45
hours. In other words, it took one person more than a week
of repetitious, error prone processing per iteration, and they
may have had five to eight documents a year. In addition, a
quality assurance (QA) team member checked each page,
ensuring completeness and no duplicates.

This was an ideal automation project. The steps
were well defined, there were no exceptions to the
business logic, and it had a repetitive nature. Deployed
as a Windows application, the team member started by
selecting the list document, and placing the cursor in the
target document where the first image was to be placed.
The application would then image the list document.
Because it was an RTF file, page breaks determined
individual images. It generated each page as a separate
TIFF file. When the images were complete, each file was
opened automatically, and the image was copied and
pasted at the insertion point in the target. The application
also automatically resized each image for the available
page, determining page dimensions and allowing for titles.
The insertion point automatically advanced to the next
page and the process repeated. The document completed
in less than 15 minutes. After validating the process for a
few weeks, they dropped the quality review requirement,
saving additional time.

Acronyms
The most onerous requirement was that each document
needed an acronym list. This list included identifying
acronyms, cataloging them (complete with the definition),
spelling them out on first occurrence, and providing a

25www.stc.org

TOOLS OF THE TRADE

The new automation took between 20 minutes to an
hour, depending on the complexity of the document, with
a turnaround time reduced to less than four hours overall.
Not all the changes were through software. One important
process modification was to move this entire procedure
from the quality review team to the book managers, as they
could fix term anomalies quickly. This level of accuracy and
speed is not possible manually. It had to be an automated
tool. Neither could have been written as a series of macros.
For instance, because of the sheer number of internal data
iterations and algorithms, it had to be optimized for speed.
It also required accessing Word’s internal structures.

The Importance of Being Embedded
The traditional programming approach keeps the
programmer separate from the client. However,
in programming for writers, it is critical to embed
programmers with the team. Merely sitting with them has
advantages, such as overhearing conversations, learning
jargon, observing tasks, and noting how things are being
done. For example, in one instance I noticed a team
member repeatedly hitting the same key for more than
a minute. She was transferring files and her application
didn’t accept long names, so she had to skip those.
Furthermore, there were at least 5,000 files in the archive,
so that task would have taken an excessive amount of
time, including manually changing the names to fix them.
By intervening, we created an ad hoc application in less
than thirty minutes that checked all the names directly in
the Windows depository and corrected the long ones. A
day-long task took less than two hours (with testing) and
could be used by other team members. Even though she
was an experienced team member who had worked with me
before, she didn’t realize that the task could be automated
at the Windows level.

An extreme example happened later when I was
transferred to become part of a team—a meeting support
team that organizes routine formal management and
engineering meetings, provides transcriptions and voice
recordings, and manages agendas and invitation lists. Due to
their transparency, they had been overlooked for technology
and process improvements. The mission was essentially
process improvement, changing procedures as needed, and
writing efficiency tools. “Nothing is off the table,” said my
supervisor. This was truly an exciting and evolutionary step.
In the nine-month assignment, the first three months were
to learn to do the job. After that, changes could be made.
And the insight that period provided was revolutionary. In
all, we added 14 tools. They ranged from converting email
forms to meeting logs, automatically adding and modifying
agenda items, and queuing long lists of presentations
(from PowerPoint, Word, and Excel) into a single PDF and
print job. Procedures were changed, too, such as pooling
team members to help with other meetings based on their
availability, to something as simple as combining Windows
locations into a single directory.

What Is VBA?
VBA is the programming language Visual Basic for Applications.
It is form of Basic and is widely held to be an easy language. It
reads like English and can be programmed with less difficulty
than other languages, like C or C#. VBA is not a modern
language like Microsoft .NET, being a predecessor to VB.NET,
and is limited in some advanced functions.

However, VBA has the advantages of still being a versatile
language and, most notably, it’s built into all Microsoft Office
applications, along with a code editor. This implies two things.
First, it supports Microsoft’s OLE Automation, which means it
interacts with all Office applications. Second, it is an interpreted
language rather than compiled. VBA has to be hosted inside an
application, typically Office applications like Word, and can’t be
used as a standalone application or as an *.exe file.

You don’t need to buy a compiler or editor for it, because
it’s fully incorporated into Office applications automatically. The
macro tool—the one that lets you record macros as a sequence
of commands—is also a VBA code generator. For example,
after recording a macro, the code will be VBA. You can then edit
that code as original programming.

Creating a Macro
An important automation aspect of Word is its ability to create
and run macros. Macros are the ability to record a sequence
of commands, and then play them back in the same sequence.
This has important time saving and quality implications in that
you can record a detailed and complicated sequence and play
them back with a single keystroke. To get started:
1.	 Open Microsoft Word.
2.	 Click View | Macros | Record Macro. The Record Macro

dialog displays.
3.	 You may choose to rename it from Macro1.
4.	 Select Document1 from Store macro in drop down.
5.	 Click OK. The mouse icon changes to include a cassette,

indicating you’re recording.
6.	 Perform your commands. In this example, we’ll format

a table.
a.	 Type “Macro Example.” Highlight it and style it as

Heading 1.
b.	 Place the cursor at the end of the line and enter Return.
c.	 Select Insert | Table | Insert Table, sweeping a 2x2

table.
d.	 Enter text in each of the four cells. You will need to tab to

the next cell rather than using the mouse.
e.	 Select both cells of the first row. You’ll have to use the

keyboard arrow keys to move the cursor.
f.	 Select any of a different font, size, color, or style.

7.	 Click View | Macros | Stop Recording.
8.	 Delete everything in the document.
9.	 Click View | Macros | View Macros.
 10.	Double click the macro name. The macro runs and the table

is placed exactly as you entered it.

September 201626

tually required twenty days to just three. In addition to
saving time and money, these tools reduce stress. Tools
development doesn’t have to be complex. Word encourages
creating macros just by recording your steps. However,
adding a programmer can unlock additional features,
such all of .NET, regular expressions, and internal Word
capabilities. It is unlikely that you would be assigned your
own programmer, though, so consider approaching the IT
department with a specific request for a single feature. As a
compromise, suggest building complex tasks progressively.
A small investment from a programmer could save the
writing team literally weeks each year.

ROBERT DELWOOD is a programmer, writer, and programmer-
writer formerly with NASA’s Johnson Space Center and Microsoft.
With more than 18 years’ experience, he has written and docu-
mented topics from Windows kernel-level device drivers and speech
recognition APIs/SDKs for Microsoft, to help desk procedures and
application manuals for the military. He specializes in Microsoft
Office automation with VB/VBA and .NET VSTO. He’s authored
several books, the most recent one, a college-level textbook, The
Secret Life of Word (http://xmlpress.net/publications/
word-secrets/) about Word’s automation for technical writers,
non-programmers, knowledge workers, or anyone who wants to do
more tasks quickly with Word.

Failed Projects: Table Number 3
Not all projects, even those considered good automation
ones, succeed. Table Number 3 in one of our documents
was a notable failure. It was a standard table, in this case,
vehicle launch, docking, and return information for all
the flights (manned and supply missions) to the space
station during a given period. The problems started
when we discovered the business logic (that is, the rules
applied to formatting and notes presentation) changed
after each release. This was partly due, ironically, to our
success, because managers wanted more business logic.
But it was largely because the rules changed outright, as
flight engineers redefined them. In addition to writing new
rules, the existing business logic became almost incompre-
hensively complex, including exceptions with exceptions
to the exceptions. Due to the time and effort required to
maintain it, management decided to revert the automation
to manual formatting. The code was rolled back to an
earlier phase of creating and formatting the table for its
initial use.

Summary
Automation is an extremely powerful tool and can be
applied in innumerable ways. For one writing team, the
document turnaround time dropped from the contrac-

member ad here

27www.stc.org

TOOLS OF THE TRADE

